

SaberX: A trigger based monitoring, action executution and self healing system

SaberX is a trigger based monitoring, alerting and action execution system which can be used for self healing. SaberX watches
for specific events in your system and fires its trigger when any such event happens. In reply to the firing of any such trigger,
you can execute an action, like sending alert to you alert management system or any command to heal your system.

A very simple example would be waching your apache server and making sure its accessable at port 80. If its not, then
you can configure saberx to fire a trigger for this. When such a trigger gets fired, you may send a curl request call
to your alert manager to raise a alert and at the same time restart your apache server.

SaberX provides many more such triggers like filetrigger (watching over files), Process trigger (watching over processes),
CPUTrigger (watching over CPU), memory trigger (watching over memory) and the already described TCP trigger (watching over
ports).

Currently SaberX only supports Linux.

View SaberX on Github [https://www.github.com/djmgit/SaberX]

Getting started with SaberX

Following section shows how to quickly get started with SaberX with an simple example.

Installing SaberX

SaberX can be simply installed using following steps:

	Clone/download the master branch.

	Enter into the repo

	Run sudo python3 setup.py install

	Verify installation using saberx --help

It is to be noted that the `setuptools` pulls dependencies from `pypi.org`. If you want to
use your own custom registry url for building dependencies then you can try one of the below mentioned ways.

Create a file called `.pydistutils.cfg` under your home directory with the below content:

[easy_install]
index-url = https://your-custom.url

Once this file has been created you can continue with the normal installation procedure mentioned above.
The registry url provided by you will be used rather than PyPi.

If you want to develop SaberX then you can also install SaberX in development mode with your
custom registry url. In this case you do not require the `.pydistutils.cfg` file. Just use the
below mentioned command for installing SaberX.

sudo python3 setup.py develop --index-url=https://your-custom.url

This is will install SaberX in development mode. You can make changes to source on the fly and
when you run SaberX, changes will be reflected, you will not have to build SaberX again and again.

Setting up a simple Trigger and action

Lets setup a simple trigger like the once metioned in the above example. We will be setting up a trigger for Apache web server.
The trigger will check whether the server is accessable (accepting connections) at port 80. If not, the trigger will be fired,
and as a response to this trigger we will restart Apache.

Open /etc/saberx/saberx.yaml and paste the following in it:

actiongroups:
- groupname: grp1
 actions:
 - actionname: action_1
 trigger:
 type: TCP_TRIGGER
 check: tcp_fail
 host: 127.0.0.1
 port: 80
 attempts: 3
 threshold: 2
 execute:
 - "systemctl restart apache2"

Open /etc/saberx/saberx.conf and paste the following:

[DEFAULT]

action_plan = /etc/saberx/saberx.yaml
lock_dir = /run
sleep_period = 5

Note

Note: The above example assumes that you have Apache web server installed and configured to receive connections at port 80
It also assumes that Apache is being managed by systemd, which is the default case with most debian based systems.

Make sure the server is up and running.

Now start saberx by just typing saberx. Optionally you can start saberx using saberx & to push it to background.
Alternatively you can create a systemd service file for saberx (more on that later). The user with which saberx is being run
should have permission to restart Apache2.

In order to simulate an issue (refusal of connections at port 80), we will intentionally stop apache2:

sudo systemctl stop apache2

This will cause Apache2 to stop listening and port 80 and start rejecting connections. It will not take apache more than 5
seconds (since that is the sleep time we have configured and can be reduced) to detect that Apache is refusing connections at
port 80 and it will fire the TCPTrigger we have defined. Once that happens, the action we have provided will get excuted, thereby
restarting Apache.

Understanding the config

actiongroups:
- groupname: grp1
 actions:
 - actionname: action_1
 trigger:
 type: TCP_TRIGGER
 check: tcp_fail
 host: 127.0.0.1
 port: 80
 attempts: 3
 threshold: 2
 execute:
 - "systemctl restart apache2"

The above is the Trigger and action configuration. It contains only one action group: grp1 and grp 1 contains only one action: action_1. There can be multiple action groups and each group can contain multiple triggers. More on this later.

The type of the Trigger we used above is TCP_TRIGGER. This triiger is only used to check tcp connections to given
host, port.

check is set to tcp_fail. This essectially means that the trigger will get fired when saberx fails to open a
tcp connection to the give host, port.

host is the host we are monitoring and port is the respective port we are openning the TCP connection to.

attempts indicate the number of attempts we are going to make. Here saberx tries to make 3 attempts at openning a tcp
connection port 80. threshold is the minimum number of times the tcp connection should fail to fire the trigger. So. in the
above example if saberx fails to open TCP connection to 127.0.0.1:80 twice out of the three times it will try, then the trigger
will get fired.

Under execute we give a list of commands to be executed when a trigger is fired. It can be any linux commnad or script
that needs to be executed. It is to be noted that if any command in the list of command fails or throws error or exit code if non
0, the rest of the commands after that is ignored.

[DEFAULT]

action_plan = /etc/saberx/saberx.yaml
lock_dir = /run
sleep_period = 5

This is the main conf file. It contains path to the yaml file containg the actions and triggers.

action_plan is the path to the yaml file containing actions and triggers (the one mentioned above)

lock_dir is the directory where saberx stores a lock file. This file acts as a lock making sure the next run of saberx
takes place only after the previous run has ended and all old threads are gone.

sleep_period is the amount of time (in seconds) saberx will wait before initiating the next run.

How SaberX works

This setion describes how SaberX works, what it does and how it does and how to configure it properly.

Actions and Groups

As already mentioned above, in the yaml file (which we will refer as the action yaml), we can provide a list of groups.

Each group comprises of a list of actions.

Each action comprises of a trigger and a execute section.

The important and interesting thing to be notes here is SaberX evaluates all the groups concurrently. It spawns a thread
for each group. So two actions in two different group will be executed concurrently. However, inside the same group, the
actions are executed synchronously.

Lets take an example:

actiongroups:
- groupname: grp1
 actions:
 - actionname: action_1
 trigger:
 type: TCP_TRIGGER
 check: tcp_fail
 host: 127.0.0.1
 port: 80
 attempts: 3
 threshold: 1
 execute:
 - "command 1"
 - "command 2"
 - actionname: action_2
 trigger:
 type: TCP_TRIGGER
 check: tcp_fail
 host: 127.0.0.1
 port: 443
 attempts: 3
 threshold: 1
 execute:
 - "command 1"
 - "command 2"
- groupname: grp2
 actions:
 - actionname: action_1
 trigger:
 type: PROCESS_TRIGGER
 check: cmdline
 regex: "nginx"
 count: 1
 operation: '>='
 execute:
 - "command 1"

In the above action yaml, actiongroups grp1 and grp2 will be run concurrently. SaberX will spawn two threads and allocate one group to each
thread. This would mean both the TCP triggers will be evaluated concurrently on each run with the process trigger
(more on process trigger below). However both tcp triggers will be evaluated synchronously. That is first saberx will evaluate
the tcp trigger for port 80 and then for port 443.

If the above seems to be confusing, the here is a small description of the control flow for the above config.

At the start of each run, SaberX will spawn a thread for each group. In this case there will be two threads in total. The thread
responsible for a group, lets consider the first group, will first evaluate grp1, once it is done with grp1 (if trigger is
fired it will run commands or simply pass), it will try to evaluate the second trigger (the one for port 443).

The second thread responsible for grp2 will also be excuting concurrently along with grp1 and hence the action contained with
in grp2 (and hence the trigger and execute sections) will be evaluated concurrently to the actions present in grp1.

Here another important thing worth noting is, if in the same group, one action’s execute section fails, that action is marked as
a failure and all the remaining actions in that group will be ignored.

For example, in the above scanario, if command 1 in action_1 in grp_1 fails (throws exception, returns non 0 exit code), then
action_1 will be marked as a failure and action_2 in grp1 will be skipped in that run. However this wont affect any action
in grp2.

In short, if you want your actions to be evaluated concurrently with no dependency between them, consider putting them in
separate groups. If you want your actions to be synchronous, then put them in same group.

Execute section

Each trigger should have an execute section. This section/key contains a list of commands to be executed if the corresponding
trigger is fired. Lets take an example:

actiongroups:
- groupname: grp1
 actions:
 - actionname: action_1
 trigger:
 type: TCP_TRIGGER
 check: tcp_fail
 host: 127.0.0.1
 port: 80
 attempts: 3
 threshold: 2
 execute:
 - "command 1"
 - "command 2"
 - "command 3"
 - "command 4"

In this example, if the above trigger fails, that is saberx is unable to open connection to 127.0.0.1:80, then SaberX will try to
execute all the 4 commands one after the other synchronously.

Omce again, it is to be noted over here that if any of the commands fail, the rest of the command will be ignored in that run.

SaberX marks the execution of a command as failure if, the command throws an error/exception or it returns a non 0 return code.

What happens in SaberX run

Before SaberX initiates a run, it tries to aquire a lock. It does so by trying to create a lock file in the configured lock
directory (present in /etc/saberx/saberx.conf).

If SaberX fails to create the file, the run fails. If a lock file is already present, it means the previous run is not yet
finished, so it does nothing and waits for the next turn.

If it succeeds in creating the lock file, then the run begins. SaberX first parses the action yaml, extarcts all the groups.
Following that it spawns one thread for each group. Each thread evaluates the actions of the concerned groups. Whenever a triiger
in any action is fired, it executes the commands present in that action’s execute section.

Once all the threads have done their job, the lock file is deleted and SaberX waits for the next run. If SaberX is unable to
delete the lock file it throws error and exits.

Triggers

SaberX provides the following 5 triggers as of now:

	TCP_TRGIGGER

	PROCESS_TRIGGER

	CPU_TRIGGER

	MEMORY_TRIGGER

	FILE_TRIGGER

TCP_TRIGGER

TCP_TRIGGER watches for tcp connection to a given host and port. It gets triggered when it succeeds/fails in creating normal/ssl
connection to a given host and port.

Example:

- actionname: action_1
 trigger:
 type: TCP_TRIGGER
 check: tcp_fail
 host: 127.0.0.1
 port: 8899
 attempts: 3
 threshold: 1
 execute:
 - "command 1"

	type tells what kind of trigger it is. It is mandatory for all triggers.

	check denotes what we want to check. If we want to fire our trigger on tcp failure then we have to set this to
tcp_failure. If we want it to fire on tcp connect, then we have to set this to tcp_connect

	host tells the host to connect to. Can be hostname or IP address. Default is 127.0.0.1.

	port tell the port of the host to connect to. Default is 80.

	ssl need to be set to True we want to create TCP connection with SSL or else False. Default is False.

	timeout is the time in seconds after which saberx will give up trying to establish the connection and report as failure.
Default is 5.

	attempts is the number of times saberx should try to establish a connection to the given host, port. Default is 3.

	threshold is the minimum number of success or failure saberx must enounter in order to report the same.

PROCESS_TRIGGER

Process trigger watches for processes with given name/regex or commandline arguments matcing given regex. If saberx
finds a process with the matching conditionals, then it fires this trigger based on certain conditions.
For example you can instruct saberx to fire process trigger if there are more than (or less than or equal to) 5 (or any number)
process with the name “nginx” running in the system.

Example:

- actionname: action_2
 trigger:
 type: PROCESS_TRIGGER
 check: cmdline
 regex: "k.* start"
 count: 1
 operation: '>='
 execute:
 - "command 1"

	type tells what kind of trigger it is. It is mandatory for all triggers.

	check can be set to either name or cmdline. If set to name then saberx will look for name and if set to
cmdline then it will look out for processes with arguments matching the given regex.

	regex is the regex pattern to match against the process name or command line arguments.

	count can be any integer. SaberX checks if the number of desired procsses in the system are greater than or less than
or equal to (as configured) count then the trigger is fired. Default is 1.

	operation can be anything among <, >, <=, >=, =. This is how SaberX will compare the number of desired processes
against the provided count in order to fire the trigger. Default is =.

In the above example, the trigger will be fired if the number of processes in the system having command line matching the
given regex is greater than or equal to 1.

CPU_TRIGGER

CPU trigger watches over the loadaverage of the system. If the loadaverage (1, 5, 15) is more, less or equal (as desired) than
the configured value, this trigger will get fired.

Example:

- actionname: action_3
 trigger:
 type: CPU_TRIGGER
 check: loadaverage
 threshold:
 - 10.0
 - 10.0
 - 10.0
 operation: '>'
 execute:
 - "command 1"

The above trigger will get fired if last 1, 5 and 15 min load average is greater than 10.0.

	type tells what kind of trigger it is. It is mandatory for all triggers.

	check as of now can only be loadaverage

	threshold is a list of thresholds for 1, 5 and 15 min load average. must be float

	operation is the operation to be performed in order to compare current loadaverage with the thresholds. This can be
set to either of <, >, <=, >=, =. Default is >.

MEMORY_TRIGGER

MEMORY_TRIGER watches over the memory of the system and fires the trigger if a given metric (used, free, available) of the
given type of memory (swap or virtual) breaches the given threshold.

Example:

- actionname: action_4
 trigger:
 type: MEMORY_TRIGGER
 check: virtual
 attr: used
 threshold: 5368709120.0
 operation: '>'
 execute:
 - "command 1"

The above trigger gets fired when used virtual memory in the system goes above 5368709120.0.

	type tells what kind of trigger it is. It is mandatory for all triggers.

	check can be either virtual or swap. It denotes the type of memory to check.

	attr can be either of used, free or available. Default is used.

	threshold is the breach value. Must be float.

	operation is the operation to be performed in order to compare current memory metric with the threshold. This can be
set to either of <, >, <=, >=, =. Default is >

FILE_TRIGGER

FILE_TRIGGER is fired when a certain condtion is met in a file. For example this trigger can be configured such that
if the last 10 lines of a log file has a certain text (pattern given by a regex), then this trigger will get fired.
It can also be made to fire if a certain file is present, empty.

Example:

- actionname: action_5
 trigger:
 type: FILE_TRIGGER
 check: regex
 path: "/var/log/apache2/error.log"
 regex: ".*act[a-z]{2}ns"
 limit: 10
 position: head
 execute:
 - "command 1"

The above trigger gets fired when the apache2 error log file given by the path param has something matching the given regex
in the first 10 lines.

	type tells what kind of trigger it is. It is mandatory for all triggers.

	check can be wither of empty, present, regex. Seting it to empty fires the trigger when the file is empty,
present fires it when the file is present. Setting it regex will search for the regex inside the file along with other
params.

	path is the path of the file resourse. Must be abosulute path.

	regex is the regex (pattern) to search in the file.

	limit is the limit for the number of lines (from bottom or top) to search the regex in. Must be as integer.
Default is 50.

	position denotes whether to search for the given regex in the file from head or tail. Value can be either of
head or tail.

For all of the above mentioned triggers, negate param can be used. It simply negates the status of the trigger. By
default its False. For example in case of file trigger, if type if present and the file is absent, trigger status will
be false. However if negate is set to true, then it will fire the trugger since the status will not become true.

Running SaberX

SaberX can be ran easily by just typing the following:

sudo saberx or sudo saberx &

In the above saberx is run with superuser priviledges. However if all the actions/commands that you want saberx to
perform can be done by a normal user, then saberx can be run with that user.

The preferred method to run saberx on Debian based linux systems would be by creating a service file for it.

SaberX Code Documentation

driver : Main entry point for SaberX

threadexecuter : Module for spawning threads and executing groups.

	
class saberx.executers.threaddriver.ThreadExecuter(**kwargs)

	Class for spawning and managing threads for executing groups

	
spawn_workers(lock_file)

	** Method to spawn threads**

This method is used to spawn new threads to execute groups.
Each thread calls the __worker fuction as target with a given group.

	Parameters

	lock_file (string) – Path to lock file

	Returns;

	bool: Threads spawned and executed successfully or not.

groupexecuter : Module for executing a group of actions.

	
class saberx.executers.groupexecuter.GroupExecuter

	Class for handling executing of a group of actions

	
static execute_group(**kwargs)

	Method for executing a group of actions

This method takes a group of actions. It then ieterates over thoses group actions
and executes them one by one using the required actionexecuter module.

It is important to be noted here that actions in a group are executed synchronously,
and if one action in the pipeline fails, ie, triggered but command executions fails due
to some excpetion or error, the entire pipeline after the failed action is ignored.

If you dont wont the above dependency between your actions, it is advised to place
the actions in different groups. Groups have no such dependencies are executed concurrently.

actionexecuter : Module for executing an action

	
class saberx.executers.actionexecuter.ActionExecuter

	class for handling execution of a given action.
This class mostly comrises of status function.

	
static execute_action(**kwargs)

	Method to execute a given action

This method executes a given action. It fires the associated trigger using the
required trigger handler if trigger is successfull, executes the desired commands.

The layout of a action will be as follows:

action_name: string
trigger:

type: TCP_TRIGGER
check: tcp_connect | tcp_fail
host: host_name
port: port
negate: true | false
attemp: number
threshold: number
ssl: true | false

execute:
- command1
- command2

	Parameters

	kwargs – Object containing action, thread lock and logger

	Returns

	Success or failure for this action

	Return type

	bool

shellexecuter : Module for executing shell commands

	
class saberx.sabercore.shellexecutor.ShellExecutor(**kwargs)

	Class for executing shell commands

	
execute_shell_list()

	Method for executing a list of shell commands

This method executes a list of shell commands.

It is to be notes that, if a single command fails, the remaning commands
adter the failed command will be ignored.

	Returns

	status of execution of the commands.

	Return type

	bool

	
execute_shell_single(command)

	Method for executing a single shell command

This method executes a single shell command

	Parameters

	command (string) – command tp be exeuted

	Returns

	status of the command execution, output of the command, return code

	Return type

	bool, output, proc_exit_code

tcptrigger : Module for firing tcp trigger

	
class saberx.sabercore.triggers.tcptrigger.TCPTrigger(**kwargs)

	Method for initialing memory trigger

	
fire_trigger()

	Method to fire the trigger

This method first sanitises the parameters, calls tcp handler
to evaluate the trigger conditions and returns trigger status

	Returns

	Trigger fired or not

	Return type

	bool

	
sanitise()

	Method to check validity of the params

	Returns

	params are proper or not

	Return type

	bool

tcphandler : Module for evaluating tcptrigger trigger.

	
class saberx.sabercore.triggers.tcphandler.TCPHandler

	Class containing TCP handler methods

	
static check_connection(**kwargs)

	Method to evaluate the TCP trigger

This method evaulates the TCP trigger. Calls the
desired methods to check tcp (normal or ssl) to a
host.

	Parameters

	kwargs (dict) – dict containing host, port, ssl, timeout, attempts, threshold, check_type

	Returns

	status, error if any

	Return type

	bool, error

	
static check_tcp(**kwargs)

	Check tcp connection to a host

This method tries to open a tcp connection to a host.

	Parameters

	kwargs (dict) – dict containing host, port and timeout

	Returns

	Whether the tcp connection could be established or not.

	Return type

	bool

	
static check_tcp_ssl(**kwargs)

	Check tcp connection with ssl to a host

This method tries to open a ssl tcp connection to a host.

	Parameters

	kwargs (dict) – dict containing host, port and timeout

	Returns

	Whether the tcp connection could be established or not.

	Return type

	bool

cputrigger : Module for firing CPU trigger

	
class saberx.sabercore.triggers.cputrigger.CPUTrigger(**kwargs)

	Class for creating CPU trigger

	
fire_trigger()

	Method to fire the trigger

This method first sanitises the parameters, calls cpu handler
to evaluate the trigger conditions and returns trigger status

	Returns

	Trigger fired or not

	Return type

	bool

	
sanitise()

	Method to check validity of the params

	Returns

	params are proper or not

	Return type

	bool

cpuhandler : Module for evaluating trigger conditions

	
class saberx.sabercore.triggers.cpuhandler.CPUHandler

	Class for evaluatingcputrigger params

	
static check_loadavg(**kwargs)

	Method to check loadaverage

This method evaluates the trigger param and descied whether the trigger
is fired or not.

	Parameters

	kwargs (object) – Object containing thresholds and operation

	Returns

	status of the trigger and error string if any

	Return type

	bool, string

memorytrigger : Module for firing memory trigger

	
class saberx.sabercore.triggers.memorytrigger.MemoryTrigger(**kwargs)

	Class for creating memory trigger

	
fire_trigger()

	Method to fire the trigger

This method first sanitises the parameters, calls memory handler
to evaluate the trigger conditions and returns trigger status

	Returns

	Trigger fired or not

	Return type

	bool

	
sanitise()

	Method to check validity of the params

	Returns

	params are proper or not

	Return type

	bool

memoryhandler : Module for performing the memory trigger operation

	
class saberx.sabercore.triggers.memoryhandler.MemoryHandler

	Class for handling memory trigger operation

	
static check_mem(**kwargs)

	Method to perform the memory operation

This method accpets the trigger attributes, performs the
specified operation and returns the trigger status.

	Parameters

	kwargs (dict) – Contains all check attributes

	Returns

	trigger status - fire or not

	Return type

	bool

	
static get_mem_type(check)

	Method for getting metric type from trigger check

This method accepts the check type and returns the desired
method to get the value of the metric specified in type.

	Parameters

	check (string) – Type of check : virtial | swap

	Returns

	psutl method to get virtual or swap memory values.

	Return type

	psutil method

processtrigger : Module for firing process trigger

	
class saberx.sabercore.triggers.processtrigger.ProcessTrigger(**kwargs)

	Class for creating process trigger

	
fire_trigger()

	Method to fire the trigger

This method first sanitises the parameters, calls process handler
to evaluate the trigger conditions and returns trigger status

	Returns

	Trigger fired or not

	Return type

	bool

	
sanitise()

	Method to check validity of the params

	Returns

	params are proper or not

	Return type

	bool

processhandler : Module for evaluating process trigger

	
class saberx.sabercore.triggers.processhandler.ProcessHandler

	**Class for performing process trigger operation

	
static check_cmdline(regex)

	Method for checking if a process exists by cmdline text

This method checks if there is any process whose cmdline arg matches the
given pattern

	Parameters

	regex (string) – String containing regex

	Returns

	status, count, error if any

	Return type

	bool, Integer, String

	
static check_cmdline_count(regex, count, operator)

	Method to get the Number of regex filtered processes by cmd and perform the deired operation

	Parameters

	
	regex (string) – Regex to filter processes

	count (string) – Threshold

	operation (string) – Desired operation

	Returns

	Result, error if any

	Return type

	bool, string

	
static check_name(regex)

	Method for checking if a process exists by name

This method checks if there is any process whose name matches the
given pattern

	Parameters

	regex (string) – String containing regex

	Returns

	status, count, error if any

	Return type

	bool, Integer, String

	
static check_name_count(regex, count, operator)

	Method to get the Number of regex filtered processes and perform the deired operation

	Parameters

	
	regex (string) – Regex to filter processes

	count (string) – Threshold

	operation (string) – Desired operation

	Returns

	Result, error if any

	Return type

	bool, string

	
static get_cmdline_count(regex)

	Method for getting count of process

This method returns the count of processes whose
cmdline matches the given regex

	Parameters

	regex (string) – String containing regex for filtering process cmdline

	Returns

	status, count, error if any

	Return type

	bool, Integer, String

	
static get_name_count(regex)

	Method for getting count of process

This method returns the count of processes whose
name matches the given regex

	Parameters

	regex (string) – String containing regex for filtering process names

	Returns

	status, count, error if any

	Return type

	bool, Integer, String

filetrigger : Module for firing file trigger

	
class saberx.sabercore.triggers.filetrigger.FileTrigger(**kwargs)

	Class for creating file trigger

	
fire_trigger()

	Method to fire the trigger

This method first sanitises the parameters, calls file handler
to evaluate the trigger conditions and returns trigger status

	Returns

	Trigger fired or not

	Return type

	bool

	
sanitise()

	This method must be implemented by child class

filehandler : Module to evaluate file trigger

	
class saberx.sabercore.triggers.filehandler.FileHandler

	** Class containing file handling methods **

	
static is_empty(path)

	Method for checking if given file is empty

	Parameters

	path (string) – path to the file resource

	Returns

	status, error if any

	Return type

	bool, string

	
static is_present(path)

	Method for checking if the given file exists

This method checks whether the given path is valid or not.

	Parameters

	path (string) – path to the file resource

	Returns

	status, error if any

	Return type

	bool, string

	
static read_from_head(path, regex, limit)

	Method to read a file from head and see if pattern exists

This method reads a given file and checks if the given pattern
exists in the top ‘n’ lines where n is given as ‘limits’.

	Parameters

	
	path (string) – path to the file resource

	regex (string) – string representing the pattern to search for

	limit (Integer) – Number of lines to query

	Returns

	status , error

	Return type

	bool, string

	
static read_from_tail(path, regex, lines)

	Method to read a file from end and see if pattern exists

This method reads a given file and checks if the given pattern
exists in the last ‘n’ lines where n is given as ‘lines’.

	Parameters

	
	path (string) – path to the file resource

	regex (string) – string representing the pattern to search for

	limit (Integer) – Number of lines to query

	Returns

	status , error

	Return type

	bool, string

	
static search_keyword(**kwargs)

	Method to execute the file operation

Method to perform the reuired file operations to
execute the trigger

	Parameters

	kwargs (dict) – Dict containing path, pattern, limit and position to read the file from

	Returns

	status, error if any

	Return type

	bool, string

Indices and tables

	Index

	Module Index

	Search Page

 Python Module Index

 a |
 c |
 f |
 g |
 m |
 p |
 s |
 t

 		 	

 		
 a	

 	
 	
 actionexecuter	
 Module for executing an action

 		 	

 		
 c	

 	
 	
 cpuhandler	
 Module for evaluating trigger conditions.

 	
 	
 cputrigger	
 Module for firing CPU trigger.

 		 	

 		
 f	

 	
 	
 filehandler	
 Module to evaluate file trigger

 	
 	
 filetrigger	
 Module for firing file trigger.

 		 	

 		
 g	

 	
 	
 groupexecuter	
 Module for executing a group of actions.

 		 	

 		
 m	

 	
 	
 memoryhandler	
 Module for performing the memory trigger operation.

 	
 	
 memorytrigger	
 Module for firing memory trigger.

 		 	

 		
 p	

 	
 	
 processhandler	
 Module for evaluating process trigger.

 	
 	
 processtrigger	
 Module for firing process trigger.

 		 	

 		
 s	

 	[image: -]
 	
 saberx	

 	
 	
 saberx.actionparser	

 	
 	
 saberx.driver	

 	
 	
 saberx.executers	

 	
 	
 saberx.executers.actionexecuter	

 	
 	
 saberx.executers.groupexecuter	

 	
 	
 saberx.executers.threaddriver	

 	
 	
 saberx.sabercore	

 	
 	
 saberx.sabercore.shellexecutor	

 	
 	
 saberx.sabercore.triggers	

 	
 	
 saberx.sabercore.triggers.cpuhandler	

 	
 	
 saberx.sabercore.triggers.cputrigger	

 	
 	
 saberx.sabercore.triggers.filehandler	

 	
 	
 saberx.sabercore.triggers.filetrigger	

 	
 	
 saberx.sabercore.triggers.memoryhandler	

 	
 	
 saberx.sabercore.triggers.memorytrigger	

 	
 	
 saberx.sabercore.triggers.processhandler	

 	
 	
 saberx.sabercore.triggers.processtrigger	

 	
 	
 saberx.sabercore.triggers.tcphandler	

 	
 	
 saberx.sabercore.triggers.tcptrigger	

 	
 	
 saberx.sabercore.triggers.triggerbase	

 	
 	
 shellexecuter	
 Module for executing shell commands

 		 	

 		
 t	

 	
 	
 tcphandler	
 Module for evaluating tcptrigger trigger.

 	
 	
 tcptrigger	
 Module for firing tcp trigger.

 	
 	
 threaddriver	
 Module for spawning threads and executing groups.

Index

 A
 | C
 | E
 | F
 | G
 | I
 | M
 | P
 | R
 | S
 | T

A

 	
 	ActionExecuter (class in saberx.executers.actionexecuter), [1]

 	
 	actionexecuter (module), [1]

C

 	
 	check_cmdline() (saberx.sabercore.triggers.processhandler.ProcessHandler static method), [1]

 	check_cmdline_count() (saberx.sabercore.triggers.processhandler.ProcessHandler static method), [1]

 	check_connection() (saberx.sabercore.triggers.tcphandler.TCPHandler static method), [1]

 	check_loadavg() (saberx.sabercore.triggers.cpuhandler.CPUHandler static method), [1]

 	check_mem() (saberx.sabercore.triggers.memoryhandler.MemoryHandler static method), [1]

 	check_name() (saberx.sabercore.triggers.processhandler.ProcessHandler static method), [1]

 	
 	check_name_count() (saberx.sabercore.triggers.processhandler.ProcessHandler static method), [1]

 	check_tcp() (saberx.sabercore.triggers.tcphandler.TCPHandler static method), [1]

 	check_tcp_ssl() (saberx.sabercore.triggers.tcphandler.TCPHandler static method), [1]

 	CPUHandler (class in saberx.sabercore.triggers.cpuhandler), [1]

 	cpuhandler (module), [1]

 	CPUTrigger (class in saberx.sabercore.triggers.cputrigger), [1]

 	cputrigger (module), [1]

E

 	
 	eval_negate() (saberx.sabercore.triggers.triggerbase.TriggerBase method)

 	execute_action() (saberx.executers.actionexecuter.ActionExecuter static method), [1]

 	
 	execute_group() (saberx.executers.groupexecuter.GroupExecuter static method), [1]

 	execute_shell_list() (saberx.sabercore.shellexecutor.ShellExecutor method), [1]

 	execute_shell_single() (saberx.sabercore.shellexecutor.ShellExecutor method), [1]

F

 	
 	FileHandler (class in saberx.sabercore.triggers.filehandler), [1]

 	filehandler (module), [1]

 	FileTrigger (class in saberx.sabercore.triggers.filetrigger), [1]

 	filetrigger (module), [1]

 	fire_trigger() (saberx.sabercore.triggers.cputrigger.CPUTrigger method), [1]

 	(saberx.sabercore.triggers.filetrigger.FileTrigger method), [1]

 	(saberx.sabercore.triggers.memorytrigger.MemoryTrigger method), [1]

 	(saberx.sabercore.triggers.processtrigger.ProcessTrigger method), [1]

 	(saberx.sabercore.triggers.tcptrigger.TCPTrigger method), [1]

 	(saberx.sabercore.triggers.triggerbase.TriggerBase method)

G

 	
 	get_check() (saberx.sabercore.triggers.triggerbase.TriggerBase method)

 	get_cmdline_count() (saberx.sabercore.triggers.processhandler.ProcessHandler static method), [1]

 	get_mem_type() (saberx.sabercore.triggers.memoryhandler.MemoryHandler static method), [1]

 	
 	get_name_count() (saberx.sabercore.triggers.processhandler.ProcessHandler static method), [1]

 	get_type() (saberx.sabercore.triggers.triggerbase.TriggerBase method)

 	GroupExecuter (class in saberx.executers.groupexecuter), [1]

 	groupexecuter (module), [1]

I

 	
 	is_empty() (saberx.sabercore.triggers.filehandler.FileHandler static method), [1]

 	
 	is_negate() (saberx.sabercore.triggers.triggerbase.TriggerBase method)

 	is_present() (saberx.sabercore.triggers.filehandler.FileHandler static method), [1]

M

 	
 	MemoryHandler (class in saberx.sabercore.triggers.memoryhandler), [1]

 	memoryhandler (module), [1]

 	
 	MemoryTrigger (class in saberx.sabercore.triggers.memorytrigger), [1]

 	memorytrigger (module), [1]

P

 	
 	ProcessHandler (class in saberx.sabercore.triggers.processhandler), [1]

 	processhandler (module), [1]

 	
 	ProcessTrigger (class in saberx.sabercore.triggers.processtrigger), [1]

 	processtrigger (module), [1]

R

 	
 	read_from_head() (saberx.sabercore.triggers.filehandler.FileHandler static method), [1]

 	
 	read_from_tail() (saberx.sabercore.triggers.filehandler.FileHandler static method), [1]

S

 	
 	saberx (module)

 	saberx.actionparser (module)

 	saberx.driver (module)

 	saberx.executers (module)

 	saberx.executers.actionexecuter (module), [1]

 	saberx.executers.groupexecuter (module), [1]

 	saberx.executers.threaddriver (module), [1]

 	saberx.sabercore (module)

 	saberx.sabercore.shellexecutor (module), [1]

 	saberx.sabercore.triggers (module)

 	saberx.sabercore.triggers.cpuhandler (module), [1]

 	saberx.sabercore.triggers.cputrigger (module), [1]

 	saberx.sabercore.triggers.filehandler (module), [1]

 	saberx.sabercore.triggers.filetrigger (module), [1]

 	saberx.sabercore.triggers.memoryhandler (module), [1]

 	saberx.sabercore.triggers.memorytrigger (module), [1]

 	
 	saberx.sabercore.triggers.processhandler (module), [1]

 	saberx.sabercore.triggers.processtrigger (module), [1]

 	saberx.sabercore.triggers.tcphandler (module), [1]

 	saberx.sabercore.triggers.tcptrigger (module), [1]

 	saberx.sabercore.triggers.triggerbase (module)

 	sanitise() (saberx.sabercore.triggers.cputrigger.CPUTrigger method), [1]

 	(saberx.sabercore.triggers.filetrigger.FileTrigger method), [1]

 	(saberx.sabercore.triggers.memorytrigger.MemoryTrigger method), [1]

 	(saberx.sabercore.triggers.processtrigger.ProcessTrigger method), [1]

 	(saberx.sabercore.triggers.tcptrigger.TCPTrigger method), [1]

 	(saberx.sabercore.triggers.triggerbase.TriggerBase method)

 	sanitize() (saberx.executers.actionexecuter.ActionExecuter static method)

 	(saberx.executers.groupexecuter.GroupExecuter static method)

 	search_keyword() (saberx.sabercore.triggers.filehandler.FileHandler static method), [1]

 	shellexecuter (module), [1]

 	ShellExecutor (class in saberx.sabercore.shellexecutor), [1]

 	spawn_workers() (saberx.executers.threaddriver.ThreadExecuter method), [1]

T

 	
 	TCPHandler (class in saberx.sabercore.triggers.tcphandler), [1]

 	tcphandler (module), [1]

 	TCPTrigger (class in saberx.sabercore.triggers.tcptrigger), [1]

 	
 	tcptrigger (module), [1]

 	threaddriver (module), [1]

 	ThreadExecuter (class in saberx.executers.threaddriver), [1]

 	TriggerBase (class in saberx.sabercore.triggers.triggerbase)

saberx

	saberx package
	Subpackages
	saberx.actionparser package
	Submodules

	saberx.actionparser.actionextractor module

	Module contents

	saberx.driver package
	Submodules

	saberx.driver.driver module

	Module contents

	saberx.executers package
	Submodules

	saberx.executers.actionexecuter module

	saberx.executers.groupexecuter module

	saberx.executers.threaddriver module

	Module contents

	saberx.sabercore package
	Subpackages

	Submodules

	saberx.sabercore.shellexecutor module

	Module contents

	Module contents

saberx.actionparser package

Submodules

saberx.actionparser.actionextractor module

Module contents

saberx.driver package

Submodules

saberx.driver.driver module

Module contents

saberx.executers package

Submodules

saberx.executers.actionexecuter module

	
class saberx.executers.actionexecuter.ActionExecuter

	Bases: object

class for handling execution of a given action.
This class mostly comrises of status function.

	
static execute_action(**kwargs)

	Method to execute a given action

This method executes a given action. It fires the associated trigger using the
required trigger handler if trigger is successfull, executes the desired commands.

The layout of a action will be as follows:

action_name: string
trigger:

type: TCP_TRIGGER
check: tcp_connect | tcp_fail
host: host_name
port: port
negate: true | false
attemp: number
threshold: number
ssl: true | false

execute:
- command1
- command2

	Parameters

	kwargs – Object containing action, thread lock and logger

	Returns

	Success or failure for this action

	Return type

	bool

	
static sanitize(action)

	

saberx.executers.groupexecuter module

	
class saberx.executers.groupexecuter.GroupExecuter

	Bases: object

Class for handling executing of a group of actions

	
static execute_group(**kwargs)

	Method for executing a group of actions

This method takes a group of actions. It then ieterates over thoses group actions
and executes them one by one using the required actionexecuter module.

It is important to be noted here that actions in a group are executed synchronously,
and if one action in the pipeline fails, ie, triggered but command executions fails due
to some excpetion or error, the entire pipeline after the failed action is ignored.

If you dont wont the above dependency between your actions, it is advised to place
the actions in different groups. Groups have no such dependencies are executed concurrently.

	
static sanitize(group)

	

saberx.executers.threaddriver module

	
class saberx.executers.threaddriver.ThreadExecuter(**kwargs)

	Bases: object

Class for spawning and managing threads for executing groups

	
spawn_workers(lock_file)

	** Method to spawn threads**

This method is used to spawn new threads to execute groups.
Each thread calls the __worker fuction as target with a given group.

	Parameters

	lock_file (string) – Path to lock file

	Returns;

	bool: Threads spawned and executed successfully or not.

Module contents

saberx.sabercore.triggers package

Submodules

saberx.sabercore.triggers.cpuhandler module

	
class saberx.sabercore.triggers.cpuhandler.CPUHandler

	Bases: object

Class for evaluatingcputrigger params

	
static check_loadavg(**kwargs)

	Method to check loadaverage

This method evaluates the trigger param and descied whether the trigger
is fired or not.

	Parameters

	kwargs (object) – Object containing thresholds and operation

	Returns

	status of the trigger and error string if any

	Return type

	bool, string

saberx.sabercore.triggers.cputrigger module

	
class saberx.sabercore.triggers.cputrigger.CPUTrigger(**kwargs)

	Bases: saberx.sabercore.triggers.triggerbase.TriggerBase

Class for creating CPU trigger

	
fire_trigger()

	Method to fire the trigger

This method first sanitises the parameters, calls cpu handler
to evaluate the trigger conditions and returns trigger status

	Returns

	Trigger fired or not

	Return type

	bool

	
sanitise()

	Method to check validity of the params

	Returns

	params are proper or not

	Return type

	bool

saberx.sabercore.triggers.filehandler module

	
class saberx.sabercore.triggers.filehandler.FileHandler

	Bases: object

** Class containing file handling methods **

	
static is_empty(path)

	Method for checking if given file is empty

	Parameters

	path (string) – path to the file resource

	Returns

	status, error if any

	Return type

	bool, string

	
static is_present(path)

	Method for checking if the given file exists

This method checks whether the given path is valid or not.

	Parameters

	path (string) – path to the file resource

	Returns

	status, error if any

	Return type

	bool, string

	
static read_from_head(path, regex, limit)

	Method to read a file from head and see if pattern exists

This method reads a given file and checks if the given pattern
exists in the top ‘n’ lines where n is given as ‘limits’.

	Parameters

	
	path (string) – path to the file resource

	regex (string) – string representing the pattern to search for

	limit (Integer) – Number of lines to query

	Returns

	status , error

	Return type

	bool, string

	
static read_from_tail(path, regex, lines)

	Method to read a file from end and see if pattern exists

This method reads a given file and checks if the given pattern
exists in the last ‘n’ lines where n is given as ‘lines’.

	Parameters

	
	path (string) – path to the file resource

	regex (string) – string representing the pattern to search for

	limit (Integer) – Number of lines to query

	Returns

	status , error

	Return type

	bool, string

	
static search_keyword(**kwargs)

	Method to execute the file operation

Method to perform the reuired file operations to
execute the trigger

	Parameters

	kwargs (dict) – Dict containing path, pattern, limit and position to read the file from

	Returns

	status, error if any

	Return type

	bool, string

saberx.sabercore.triggers.filetrigger module

	
class saberx.sabercore.triggers.filetrigger.FileTrigger(**kwargs)

	Bases: saberx.sabercore.triggers.triggerbase.TriggerBase

Class for creating file trigger

	
fire_trigger()

	Method to fire the trigger

This method first sanitises the parameters, calls file handler
to evaluate the trigger conditions and returns trigger status

	Returns

	Trigger fired or not

	Return type

	bool

	
sanitise()

	This method must be implemented by child class

saberx.sabercore.triggers.memoryhandler module

	
class saberx.sabercore.triggers.memoryhandler.MemoryHandler

	Bases: object

Class for handling memory trigger operation

	
static check_mem(**kwargs)

	Method to perform the memory operation

This method accpets the trigger attributes, performs the
specified operation and returns the trigger status.

	Parameters

	kwargs (dict) – Contains all check attributes

	Returns

	trigger status - fire or not

	Return type

	bool

	
static get_mem_type(check)

	Method for getting metric type from trigger check

This method accepts the check type and returns the desired
method to get the value of the metric specified in type.

	Parameters

	check (string) – Type of check : virtial | swap

	Returns

	psutl method to get virtual or swap memory values.

	Return type

	psutil method

saberx.sabercore.triggers.memorytrigger module

	
class saberx.sabercore.triggers.memorytrigger.MemoryTrigger(**kwargs)

	Bases: saberx.sabercore.triggers.triggerbase.TriggerBase

Class for creating memory trigger

	
fire_trigger()

	Method to fire the trigger

This method first sanitises the parameters, calls memory handler
to evaluate the trigger conditions and returns trigger status

	Returns

	Trigger fired or not

	Return type

	bool

	
sanitise()

	Method to check validity of the params

	Returns

	params are proper or not

	Return type

	bool

saberx.sabercore.triggers.processhandler module

	
class saberx.sabercore.triggers.processhandler.ProcessHandler

	Bases: object

**Class for performing process trigger operation

	
static check_cmdline(regex)

	Method for checking if a process exists by cmdline text

This method checks if there is any process whose cmdline arg matches the
given pattern

	Parameters

	regex (string) – String containing regex

	Returns

	status, count, error if any

	Return type

	bool, Integer, String

	
static check_cmdline_count(regex, count, operator)

	Method to get the Number of regex filtered processes by cmd and perform the deired operation

	Parameters

	
	regex (string) – Regex to filter processes

	count (string) – Threshold

	operation (string) – Desired operation

	Returns

	Result, error if any

	Return type

	bool, string

	
static check_name(regex)

	Method for checking if a process exists by name

This method checks if there is any process whose name matches the
given pattern

	Parameters

	regex (string) – String containing regex

	Returns

	status, count, error if any

	Return type

	bool, Integer, String

	
static check_name_count(regex, count, operator)

	Method to get the Number of regex filtered processes and perform the deired operation

	Parameters

	
	regex (string) – Regex to filter processes

	count (string) – Threshold

	operation (string) – Desired operation

	Returns

	Result, error if any

	Return type

	bool, string

	
static get_cmdline_count(regex)

	Method for getting count of process

This method returns the count of processes whose
cmdline matches the given regex

	Parameters

	regex (string) – String containing regex for filtering process cmdline

	Returns

	status, count, error if any

	Return type

	bool, Integer, String

	
static get_name_count(regex)

	Method for getting count of process

This method returns the count of processes whose
name matches the given regex

	Parameters

	regex (string) – String containing regex for filtering process names

	Returns

	status, count, error if any

	Return type

	bool, Integer, String

saberx.sabercore.triggers.processtrigger module

	
class saberx.sabercore.triggers.processtrigger.ProcessTrigger(**kwargs)

	Bases: saberx.sabercore.triggers.triggerbase.TriggerBase

Class for creating process trigger

	
fire_trigger()

	Method to fire the trigger

This method first sanitises the parameters, calls process handler
to evaluate the trigger conditions and returns trigger status

	Returns

	Trigger fired or not

	Return type

	bool

	
sanitise()

	Method to check validity of the params

	Returns

	params are proper or not

	Return type

	bool

saberx.sabercore.triggers.tcphandler module

	
class saberx.sabercore.triggers.tcphandler.TCPHandler

	Bases: object

Class containing TCP handler methods

	
static check_connection(**kwargs)

	Method to evaluate the TCP trigger

This method evaulates the TCP trigger. Calls the
desired methods to check tcp (normal or ssl) to a
host.

	Parameters

	kwargs (dict) – dict containing host, port, ssl, timeout, attempts, threshold, check_type

	Returns

	status, error if any

	Return type

	bool, error

	
static check_tcp(**kwargs)

	Check tcp connection to a host

This method tries to open a tcp connection to a host.

	Parameters

	kwargs (dict) – dict containing host, port and timeout

	Returns

	Whether the tcp connection could be established or not.

	Return type

	bool

	
static check_tcp_ssl(**kwargs)

	Check tcp connection with ssl to a host

This method tries to open a ssl tcp connection to a host.

	Parameters

	kwargs (dict) – dict containing host, port and timeout

	Returns

	Whether the tcp connection could be established or not.

	Return type

	bool

saberx.sabercore.triggers.tcptrigger module

	
class saberx.sabercore.triggers.tcptrigger.TCPTrigger(**kwargs)

	Bases: saberx.sabercore.triggers.triggerbase.TriggerBase

Method for initialing memory trigger

	
fire_trigger()

	Method to fire the trigger

This method first sanitises the parameters, calls tcp handler
to evaluate the trigger conditions and returns trigger status

	Returns

	Trigger fired or not

	Return type

	bool

	
sanitise()

	Method to check validity of the params

	Returns

	params are proper or not

	Return type

	bool

saberx.sabercore.triggers.triggerbase module

	
class saberx.sabercore.triggers.triggerbase.TriggerBase(**kwargs)

	Bases: object

	
eval_negate(triggered, error)

	

	
fire_trigger()

	This method must be implemented by child class

	
get_check()

	

	
get_type()

	

	
is_negate()

	

	
sanitise()

	This method must be implemented by child class

Module contents

saberx.sabercore package

Subpackages

	saberx.sabercore.triggers package
	Submodules

	saberx.sabercore.triggers.cpuhandler module

	saberx.sabercore.triggers.cputrigger module

	saberx.sabercore.triggers.filehandler module

	saberx.sabercore.triggers.filetrigger module

	saberx.sabercore.triggers.memoryhandler module

	saberx.sabercore.triggers.memorytrigger module

	saberx.sabercore.triggers.processhandler module

	saberx.sabercore.triggers.processtrigger module

	saberx.sabercore.triggers.tcphandler module

	saberx.sabercore.triggers.tcptrigger module

	saberx.sabercore.triggers.triggerbase module

	Module contents

Submodules

saberx.sabercore.shellexecutor module

	
class saberx.sabercore.shellexecutor.ShellExecutor(**kwargs)

	Bases: object

Class for executing shell commands

	
execute_shell_list()

	Method for executing a list of shell commands

This method executes a list of shell commands.

It is to be notes that, if a single command fails, the remaning commands
adter the failed command will be ignored.

	Returns

	status of execution of the commands.

	Return type

	bool

	
execute_shell_single(command)

	Method for executing a single shell command

This method executes a single shell command

	Parameters

	command (string) – command tp be exeuted

	Returns

	status of the command execution, output of the command, return code

	Return type

	bool, output, proc_exit_code

Module contents

saberx package

Subpackages

	saberx.actionparser package
	Submodules

	saberx.actionparser.actionextractor module

	Module contents

	saberx.driver package
	Submodules

	saberx.driver.driver module

	Module contents

	saberx.executers package
	Submodules

	saberx.executers.actionexecuter module

	saberx.executers.groupexecuter module

	saberx.executers.threaddriver module

	Module contents

	saberx.sabercore package
	Subpackages
	saberx.sabercore.triggers package
	Submodules

	saberx.sabercore.triggers.cpuhandler module

	saberx.sabercore.triggers.cputrigger module

	saberx.sabercore.triggers.filehandler module

	saberx.sabercore.triggers.filetrigger module

	saberx.sabercore.triggers.memoryhandler module

	saberx.sabercore.triggers.memorytrigger module

	saberx.sabercore.triggers.processhandler module

	saberx.sabercore.triggers.processtrigger module

	saberx.sabercore.triggers.tcphandler module

	saberx.sabercore.triggers.tcptrigger module

	saberx.sabercore.triggers.triggerbase module

	Module contents

	Submodules

	saberx.sabercore.shellexecutor module

	Module contents

Module contents

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 SaberX: A trigger based monitoring, action executution and self healing system

_static/up.png

_static/up-pressed.png

